

ON Semiconductor®

NC7SZU04 TinyLogic[®] UHS Unbuffered Inverter

Features

- Unbuffered for Crystal Oscillator and Analog Applications
- Balanced Output Drive: ±16mA at 4.5V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Matches Performance of LCX Operated at 3.3V V_{CC}
- Low Quiescent Power: I_{CC}<2μA, V_{CC}=5.5V, T_A=25°C
- Ultra-Small MicroPak™ Packages
- Space-Saving SOT23 and SC70 Packages

Description

The NC7SZU04 is a single unbuffered inverter from ON Semiconductor's Ultra-High Speed series of TinyLogic®. The special purpose unbuffered circuit design is primarily intended for crystal oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\rm CC}$ range.

Ordering Information

Part Number	Top Mark	Eco Status	Package	Packing Method
NC7SZU04M5X	7ZU4	RoHS	5-Lead SOT23, JEDEC MO-178 1.6mm	3000 Units on Tape & Reel
NC7SZU04P5X	ZU4	RoHS	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel
NC7SZU04L6X	C5	RoHS	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel
NC7SZU04FHX	C5	Green	6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel

Connection Diagrams

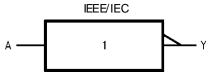


Figure 1. Logic Symbol

Pin Configurations

Figure 2. SC70 and SOT23 (Top View)

Figure 3. MicroPak (Top Through View)

Pin Definitions

Pin # SC70 / SOT23	Pin # MicroPak	Name	Description
1	1,5	NC	No Connect
2	2	А	Input
3	3	GND	Ground
4	4	Υ	Output
5	6	Vcc	Supply Voltage

Function Table

Y = /A

Inputs	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Para	ameter	Min.	Max.	Unit
Vcc	Supply Voltage		-0.5	6.0	V
V _{IN}	DC Input Voltage		-0.5	6.0	V
Vout	DC Output Voltage		-0.5	6.0	V
luz	DC Input Diode Current	V _{IN} < -0.5V		-50	mA
lık	DC Input Diode Current	V _{IN} > V _{CC} +5.0V		+20	IIIA
la	DC Output Diodo Current	V _{OUT} < -0.5V		-50	mA
loк	DC Output Diode Current	V _{OUT} > 0.5V, V _{CC} =GND		+50	IIIA
lout	DC Output Current			±50	mA
Icc or I _{GND}	DC V _{CC} or Ground Current			±100	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under B	ias		+150	°C
TL	Junction Lead Temperature (S	oldering, 10 Seconds)		+260	°C
		SOT-23		200	
D.	Dow or Dissinction at 1959C	SC70-5		150	
P_D	Power Dissipation at +85°C	MicroPak-6		130	mW
		MicroPak2-6		120	1
ESD	Human Body Model, JEDEC:JE	SD22-A114		4000	V
EOD	Charge Device Model, JEDEC:	JESD22-C101		2000	1 v

Recommended Operating Conditions

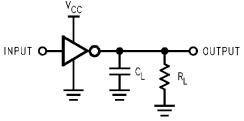
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit
V/	Supply Voltage Operating		1.65	5.50	V
Vcc	Supply Voltage Data Retention		1.50	5.50	7 V
V_{IN}	Input Voltage		0	5.5	V
Vout	Output Voltage		0	Vcc	V
T _A	Operating Temperature		-40	+85	°C
		SOT-23		300	
0	Thermal Resistance	SC70-5		425] ∘c/w
$\theta_{\sf JA}$	memai nesistance	MicroPak-6		500]
		MicroPak2-6		560	1

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Cum hal	Parameter	V	Cons	ditions	T	_A =+25°	С	T _A =-40	to +85°C	Units	
Sym bol	Parameter	Vcc	Conc	uitions	Min.	Тур.	Max.	Min.	Max.	Units	
\/	HIGH Level	1.8 to 2.7			0.85V _{CC}			0.85V _{CC}		V	
V_{IH}	Input Voltage	3.0 to 5.5			0.80V _{CC}			0.80V _{CC}		V	
1/	LOW Level Input	1.8 to 2.7					0.15V _{CC}		0.15V _{CC}	V	
V_{IL}	Voltage	3.0 to 5.5					0.20V _{CC}		0.20V _{CC}	V	
		1.65			1.55	1.65		1.55			
		1.80			1.60	1.80		1.60			
		2.30	VIN=VIL, IOH	₊ =-100μA	2.10	2.30		2.10			
		3.00			2.70	3.00		2.70			
	HIGH Level	4.50			4.00	4.40		4.00		V	
V_{OH}	Output Voltage	1.65		I _{OH} =-4mA	1.29	1.52		1.29		V	
		2.30		I _{OH} =-4mA	1.90	2.14		1.90			
		3.00	V _{IN} =GND	I _{OH} =-8mA	2.40	2.75		2.40			
		3.00		I _{OH} =-12mA	2.30	2.61		2.30			
		4.50		I _{OH} =-16mA	3.80	4.13		3.80			
		1.65				0.00	0.10		0.10		
		1.80				0.00	0.20		0.20		
		2.30	VIN=VIH, IOI	_=100μA		0.00	0.20		0.20		
		3.00				0.00	0.30		0.30		
\ /	LOW Level	4.50				0.00	0.50		0.50	V	
V_{OL}	Output Voltage	1.65		I _{OL} =4mA		0.80	0.24		0.24	V	
		2.30		I _{OL} =4mA		0.10	0.30		0.30		
		3.00	$V_{IN} = V_{CC}$	I _{OL} =8mA		0.17	0.40		0.40		
		3.00		I _{OL} =12mA		0.25	0.55		0.55		
		4.50		I _{OL} =16mA		0.226	0.55		0.55		
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5V,	GND			±1		±10	μΑ	
Icc	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5V,	GND			2		20	μΑ	
	Peak Supply	1.8				2					
ICCPEAK	Current in	2.5		n, V _{IN} =Adjust		4				mΔ	
ICCPEAK	Analog Operation	3.3	for Peak I	∞ Current		10				mA	
	Operation	5.0				30					

AC Electrical Characteristics

Symbol	Parameter	Vcc	Conditions	T,	_{A=+25°C}	;	T _A =-40	to +85°C	Units	Figure
Symbol	Farameter	VCC	Conditions	Min.	Тур.	Max.	Min.	Max.	Onics	rigure
		1.65		1.0		11.7	1.0	12.1		
		1.80		1.0		8.5	1.0	9.0		
		2.50 ± 0.20	$C_L=15pF$, $R_L=1M\Omega$,	0.8		6.2	0.8	6.5		
$t_{\text{PLH}}, t_{\text{PHL}}$	Propagation Delay	3.30 ± 0.30		0.5		4.5	0.5	4.8	ns	Figure 4 Figure 5
		5.00 ± 0.50		0.5		3.9	0.5	4.1		9
		3.30 ± 0.30	C _L =50pF,	1.0		6.0	1.0	6.5		
		5.00 ± 0.50	R _L =500Ω,	0.8		5.0	0.8	5.5		
C_{IN}	Input Capacitance	0.00			4.5				pF	
C _{PD}	Power Dissipation	3.30			6.3				pF	Figure 6
OPD	Capacitance ⁽²⁾	5.00			9.5				Ρı	i igule o

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output lading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static).

Note:

- 3. C_L includes load and stray capacitance.
- 4. Input PRR=1.0MHz; tw=500ns

Figure 4. AC Test Circuit

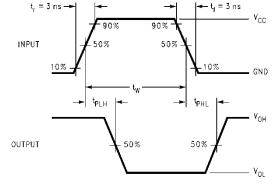
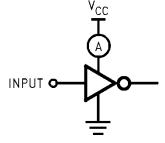



Figure 5. AC Waveforms

Note:

- 5. When operating the NC7SZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage results in substantial simultaneous conduction currents when the stage is in the linear region. See the ICCPEAK specification in the DC Electrical Characteristics table.
- 6. Input=AC Waveform; t_r=t_f=1.8ns; PRR=variable; Duty Cycle =50%.

Figure 6. Test Circuit

Physical Dimensions

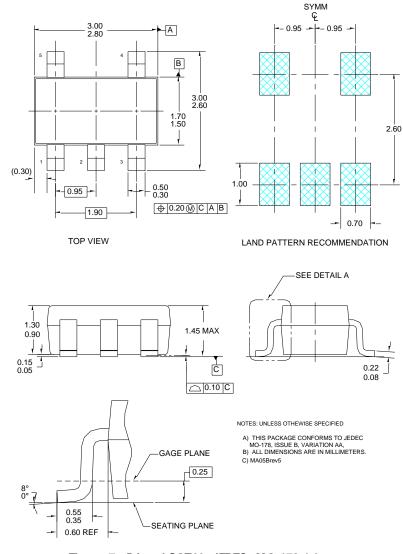


Figure 7. 5-Lead SOT23, JEDEC MO-178 1.6mm

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
M5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

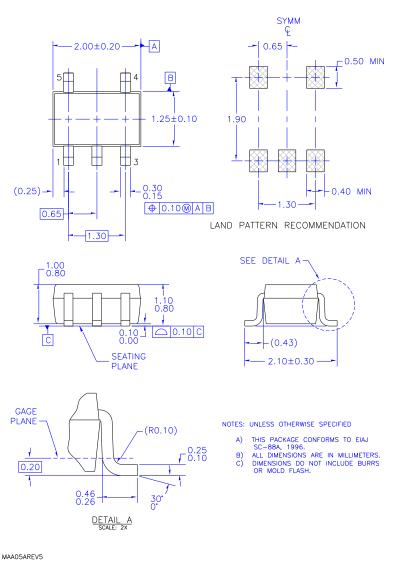
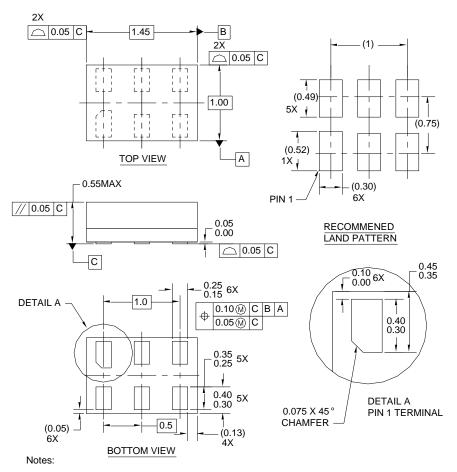



Figure 8. 5-Lead, SC70, EAJ SC-88a, 1.25mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Physical Dimensions

- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD 2. DIMENSIONS ARE IN MILLIMETERS 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Figure 9. 6-Lead, MicroPak™, 1.0mm Wide

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

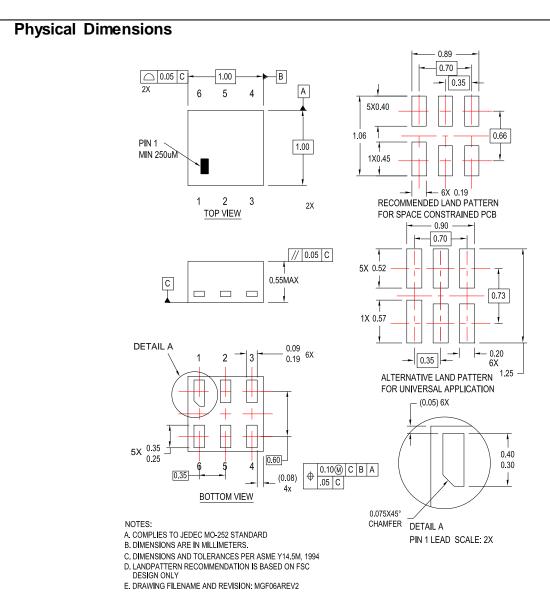


Figure 10.6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specifically the warranty therein, which covers ON Semiconductor products.

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
FHX	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

C7SZU04 -
\sim
N
\subseteq
4
TinyLo
/Logic
()
_
Ī
SH
HS U
HS Unk
HS Unbut
HS Unbuffe
HS Unbuffered
HS Unbuffered
ogic UHS Unbuffered Inverter

Z

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications using ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all daims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any cla

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semic on ductor Website: $\underline{www.onsemi.com}$

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative