Home > Products > Intellectual Property > Lattice IP Cores > 32 Bit PCI Target

32 Bit PCI Target

Overview

Peripheral Component Interconnect ($\mathbf{P C I}$) is a widely accepted bus standard that is used in many applications including telecommunications, embedded systems, high performance peripheral cards, and networking.

Lattice's PCI IP core provides an ideal solution that meets the needs of today's high performance PCI applications. It is fully compliant with the PCI Local Bus Specification, revision 2.2 for speeds up to 66 MHz . The PCI core provides a customizable 32/ 64-bit master/ target or target solution. The core bridges the gap between the PCI interface and a specific design application, providing an integrated PCI solution. The PCI solution allows designers to focus on the application rather than on the PCI specification, resulting in a faster time-to-market

The Lattice PCl offering is available in a number of configurations covering 32-bit PCI, 64-bit PCI, 32-bit local bus, 64-bit local bus, master/target and target applications. In this document, details of 64 -bit operation and master operation only apply when relevant. The appendix to the user's guide shows what cores are available on which devices.

Note: Signals in shaded boxes are used for 64 -bit PCl Cores.

Features

Available as 32/64-Bit PCI Bus and 32/64-Bit Local Bus PCI SIG Local Bus Specification, Revision 3.0 Compliant 64-Bit Addressing Support (Dual Address Cycle)

Fast Back-to-Back Transaction Support Supports Zero Wait State Transactions Special Cycle Transaction Support

Capabilities List Pointer Support
Parity Error Detection
Up to Six Base Address Registers (BARs)

Customizable Configuration Space
Up to 66 MHz PCI
Fully Synchronous Design

Performance and Resource Utilization

LatticeECP3 ${ }^{1}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAx (MHz)
32-bit	Target 33 MHz	483	706	470	-	48	
32-bit	Target 66 MHz	589	963	491	-	43	

1. Performance and utilization data are generated using an LFE3-95EA-7FN1156CES device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP3 family.

LatticeECP2 M ${ }^{1}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAx (MHz)
32-bit	Target 33 MHz	593	717	472	-	48	
32-bit	Target 66 MHz	606	972	493	-	43	

1. Performance and utilization data are generated using an LFE2M-35E-6F672C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2M family.

LatticeECP2 ${ }^{1}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAX (MHz)
32-bit	Target 33 MHz	593	717	472	-	48	33
32-bit	Target 66 MHz	606	972	493	-	48	66

1. Performance and utilization data are generated using an LFE2-20E-6F672C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2 family.

LatticeEC/ $\mathbf{P}^{\mathbf{1}}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAx (MHz)
32-bit	Target 33 MHz	586	703	472	-	48	33
32-bit	Target 66 MHz	606	966	493	-	48	66

1. Performance and utilization data are generated using an LFEC33E-5F672C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP/EC family.

LatticeSC ${ }^{1}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAx (MHz)
32-bit	Target 33 MHz	488	679	470	-	48	
32-bit	Target 66 MHz	618	990	493	-	43	

rertormance may vary wnen using a aırerent sortware version or targetıng a airterent aevice density or speed graae witnin the LatticeSC family.

MachXO2 $^{\mathbf{1}}$							
Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	$\mathbf{f}_{\text {MAX (MHz) }}$
32 -bit	Target 33 MHz	304	601	422	-	48	33

1. Preliminary information. Performance and utilization characteristics are generated using LCMXO2-1200HC-6TG144CES device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the MachXO2 family

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	$\mathbf{f}_{\text {MAX (MHz) }}$
32-bit	Target 33 MHz	359	703	472	-	48	33
32-bit	Target 66 MHz	517	966	493	-	48	66

1. Performance and utilization data are generated using an LCMXO2280C-5FT324C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the MachXO family.

LatticeXP2 ${ }^{1}$

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	fMAx (MHz)
32-bit	Target 33 MHz	588	709	470	-	48	33
32-bit	Target 66 MHz	601	964	491	-	48	66

1. Performance and utilization data are generated using an LFXP2-17E-6F484C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP2 family.

Bus Width	I Pexpress Mode	Slices	LUTs	Registers	sysMEM EBRs	External Pins	$\mathbf{f}_{\text {MAX (MHz) }}$
32-bit	Target 33 MHz	586	703	472	-	48	33
32-bit	Target 66 MHz	606	966	493	-	48	66

1. Performance and utilization data are generated using an LFXP20C-5F484C device with Lattice Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP family.

Ordering Information

Family	Bus Width	Bus Speed	$\begin{array}{c}\text { Target } \\ \text { Part Number }\end{array}$		
LatticeECP3	32 -bit	$33 \mathrm{MHz}, 66 \mathrm{MHz}$	$\mathrm{PCI}-\mathrm{T} 32-\mathrm{E} 3-\mathrm{U} 6$	$]$	$\mathrm{PCI}-\mathrm{T} 32-\mathrm{PM}-\mathrm{U6}$
:---					
LatticeECP2M					
LatticeECP2					
LatticeECP/EC					
LatticeSC					
MachXO2					

IP Version: PCI Target $33 \mathrm{MHz}=6.5, \mathrm{PCI}$ Target $66 \mathrm{MHz}=6.3$

Evaluate: To download a full evaluation version of this IP, go to the Lattice IP Server tab in the IPexpress Main Window. All ispLeverCORE IP cores and modules available for download are visible on this tab. *PCI cores for ORCA and ispXPGA, devices are supported by the Lattice factory-configurable design flow.
Purchase: To find out how to purchase the IP Core, please contact your local Lattice Sales Office.

